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Zero-Dimensional Spectral Measures for
Quasi-Periodic Operators with Analytic Potential

S. Jitomirskaya1 and M. Landrigan1

Received March 6, 2000

We prove that for quasiperiodic operators with potential V(n)=*f (%+:n),
f analytic, the spectral measures are zero-dimensional for * large, any irratio-
nal :. It extends a result of Jitomirskaya and Last to the case of any analytic f.
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1. INTRODUCTION

In this paper we extend a result of ref. 5. We are working with one-dimen-
sional quasiperiodic Schro� dinger operators on l2(Z), defined by

(H�)(n)=�(n+1)+�(n&1)+V(n) �(n) (1.1)

The potential is given by V(n)=*f (%+:n) where f is a function of period
one and throughout : is assumed to be irrational. For the more general
setting of ergodic potentials see, e.g., ref. 2.

Herman(3) showed that if f (%) is a trigonometric polynomial, then for
* sufficiently large, Lyapunov exponents #(E ) are positive for any E # R.
Later Sorets and Spencer(6) showed that this is true for any analytic f.
A different proof has recently been obtained by Bourgain and Goldstein.(1)

It is known (see, e.g., ref. 2) that positive Lyapunov exponents imply the
absence of absolutely continuous spectrum. For f (%) a trigonometric poly-
nomial Jitomirskaya and Last have shown that the spectrum is actually of
Hausdorff dimension zero when the Lyapunov exponents are positive. Here
we will prove the analogous result for any analytic potential, i.e., we show
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Theorem 1. Suppose f is analytic and let + be the associated
spectral measure of H. Then there is *0 such that for all *>*0 the following
holds: If #(E ) is positive for all E in some +-measurable set A, then the
restriction +(A & } ) is zero-dimensional.

Comments. (1) This theorem combined with the Sorets�Spencer
result shows that for an analytic potential for * large enough, the spectral
measure is of Hausdorff dimension zero.

(2) The *0 appearing in the theorem is no larger than the one needed
for the Sorets�Spencer (or Bourgain�Goldstein) proof. So while the result
is not optimal in its need for * large, at least the conclusion of zero dimen-
sionality holds whenever the Lyapunov exponents are known to be positive.

2. PRELIMINARIES

Here we outline the necesary tools of Hausdorff dimension, transfer
matrices, Lyupunov exponents, and state the relevant theorem from ref. 5.

For a subset S of R and : # [0, 1], the :-dimensional Hausdorff
measure, h:, is given by

h:(S)# lim
$ � 0

inf
$&covers

:
�

&=1

|b& |: (2.1)

where a $-cover is a cover of S by a countable collection of intervals,
S/��

&=1 b& , such that for each & the length of b& is at most $. Given that
S{<, there exists an :(S) # [0, 1] such that h:(S)=0 for any :>:(S),
and h:(S)=� for any :<:(S). This unique :(S) is called the Hausdorff
dimension of S. A measure is called zero-dimensional if it is supported on
a set of Hausdorff dimension zero.

We denote the n-step transfer-matrix of

Hu=Eu (2.2)

by 8n(E ):

8n(E )#Mn(E ) Mn&1(E ) } } } M1(E )

where

Mn(E )#\E&V(n)
1

&1
0 + (2.3)

792 Jitomirskaya and Landrigan



In our case, V(n)= f (T n%) where T is the ergodic transformation T (%)=
%+:, the corresponding operator H and therefore the transfer-matrices 8n

and Mn will depend on %. We have Mn(E, %)=M(E, T n%), where

M(E, %)#\E&*f (%)
1

&1
0 + (2.4)

The Lyapunov exponent, #(E ), is defined as

#(E )# lim
k � �

�X ln &8k(E, %)& d+(%)

k
=inf

k

�X ln &8k(E, %)& d+(%)

k
(2.5)

For any % the upper Lyapunov exponent #� (E ) is defined by

#� (E )#lim sup
n � �

(1�n) ln &8n(E )&

In ref. 4 it is shown that for a half-line operator if #� >0 for all E in some
+-measurable set A, the + restricted to A is zero-dimensional. To state the
lemma from ref. 5 on how to extend this to a whole line operator we intro-
duce some notation. We define the ``right'' and ``left'' transfer matrices by
8+

n (E )#8n(E ), and 8&
n (E )#M&n+1(E ) M&n+2(E ) } } } M&1(E ) M0(E ).

The result we use is

Lemma 2 (ref. 5). Suppose that for every E in some +-measurable
set A there exist a, c>0 and sequences kn � �, j \

n �ckn , such that
&8\

jn
\ &�eakn. Then the restriction +(A & } ) is zero-dimensional.

3. PROOF OF THEOREM 1

For now we leave out the ``plus or minus'' notation. Assume we are
dealing with, say, the ``right'' transfer matrices. At the end we point out
how to relate the two different matrices to be able to apply Lemma 2.

We start by using a product from ref. 6 to obtain an important argu-
ment calculation (3.6). Since f is periodic and analytic we may, slightly
abusing notations, consider f (z)= f (e2?i%)#f (%) to be defined on a neigh-
borhood of |z|=1. Let

Ak=Ak(z)=E&*f (zk)

where zn=e2?in: } z. Denote the top left of 8n(E ) by gn . Now set '1=0 and

'k+1=1�(Ak&'k)
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Then

8n(E ) \ 1
'1+= `

n

k=1

(Ak&'k) } \ 1
'n+1+

and so

gn= `
n

k=1

(Ak&'k) (3.1)

Now we use a fact which seems to be implicit in ref. 6 and is proven
explicitly in ref. 1. The fact is: There is m0>0 such that for any real
E1 there is a radius r1<1 such that for all |z|=r1 , | f (z)&E1|>m0 . By
reflection we get the same for r2>1. Using this with E1=E�* we get that
| f&E�*|>m0 on |z|=r1 , r2 , or, as we use,

|*f&E |>*m0 (3.2)

Note that for *m0>2 we have

|'k |<1 (3.3)

for all k and so

| gn(z)|= `
n

k=1

|Ak&'k |� `
n

k=1

( |Ak |&1)>(*m0&1)n (3.4)

Take t such that en#�t<(*m0&1)n. From (3.4) we get that on
|z|=r1 , r2

| gn&(gn&en#�t)|<| gn | (3.5)

Recall that for a contour 1 the argument of a funcion f over 1 is

1
2?i |

1

f $
f

dz

Let 1 be the contour which goes around |z|=r1 and |z|=r2 clockwise
and counter-clockwise irrespectively. Then with the argument always
over 1, (3.5), (3.1), (3.2), (3.3) and Rouche's Theorem imply

Arg(gn&en#�t)=Arg(gn)=Arg `
n

k=1

(Ak&'k)

= `
n

k=1

Arg(Ak&'k)= :
n

k=1

Arg Ak=n } Arg(*f&E ) (3.6)
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Note that the boundedness of f immediately implies

&8n(%, E )&�enC (3.7)

for some C<�.
Let Ak = [% # [0, 1) : &8k(%, E )& > ek#(E )�t ]. Since #( E ) =

infk k&1 �1
0 ln &8k(%, E )& d%, k#(E )��1

0 ln &8k(%, E )& d%=�Ak
+�[0, 1)"Ak

�
|Ak | kC+(1&|Ak | ) k#(E )�t, where | } | stands for Lebesque measure. So

|Ak |�
k#(E )&k#(E )�t

kC&k#(E )�t
=

#(E )(1&1�t)
C&#(E )�t

#c(E )

By the above argument calculation [% # [0, 1) : | gk |>ek#(E )�t]�Ak

consists of no more than k Arg(*f&E ) intervals. Therefore there exists a
segment, 2k/Ak , with |2k |�c(E )�(k Arg).

We will now show that for every % there exists a sequence jn � � such
that &8jn

& is exponentially large.
This sequence will be related to a continued fractions expansion of :.

Let pn�qn be the sequence of continued fraction approximants of :. Let
2/[0, 1) be an arbitrary segment. We use the following from ref. 5.

Lemma 3. Let n # N be such that |2|>1�qn . Then for any % there
exist k in [0, 1,..., qn+qn&1&1] such that T k

:% # 2.
Now set

kn=_c(E ) qn

Arg &+1 (3.8)

By the lemma for every % there exists j in [0, 1,..., qn+qn&1&1] such that
T j

: % # Akn&1 , and so &8kn&1(T j
:%)&>e (kn&1) #(E )�t. Since 8 j+kn&1(%)=

8kn&1(T j
:%) 8 j (%), and each 8 i is unimodular we obtain that either

&8j (%)& or &8j+kn&1(%)& is greater than e((kn&1) #(E ))�2t. Let

jn=min[ j # [0,..., qn+qn&1&1+kn&1] : &8j (%)&�e((kn&1) #(E ))�2t] (3.9)

To finish the proof it now remains to notice that the two inequalities

&8j (%)&�e((kn&1) #(E ))�2t�e[#(E )�4t] } [(c(E ) qn )�Arg]

and

jn�qn+qn&1&1+kn�qn+qn&1+
c(E ) qn

Arg
�qn _2+

c(E )
Arg &
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together imply

&8jn(%)&�e jn } const

where const=[(#(E ) c(E ))�(4t Arg)] } [1�(2+c(E )�Arg)].
Now we point out how to apply Lemma 2. In our (quasiperiodic) case

we have

8+, :
n (%, E )=M(T n

:%, E ) M(T n&1
: %, E ) } } } M(T:%, E )

and

8&, :
n (%, E )#M(T n&1

&: %, E ) M(T n&2
&: %, E ) } } } M(T&:%, E ) M(%, E )

and

8&, :
n (%, E )=8+, (&:)

n (%+:, E ) (3.10)

Fix =>0. Note that the denominators qn are the same for : and &:.
So from (2.5), (3.9) and (3.10) we obtain that, for n sufficiently large, the
conditions of Lemma 2 are satisfied with A=[E : #(E )>0], a=const,
c=[Arg�c(E )][2+c(E )�Arg], kn defined by (3.8), and sequences j \

n

defined by (3.9) with 8n=8\, :
n .
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